REAÇÕES ORGÂNICAS - Prof. Flokinho

REAÇÕES DE SUBSTITUIÇÃO

Entre os compostos orgânicos que sofrem reações de substituição destacam-se os alcanos, o benzeno e seus derivados, os haletos de alguila, álcoois e ácidos carboxílicos.

❖ HALOGENAÇÃO DE ALCANOS

É quando substituímos um ou mais átomos de hidrogênio de um alcano por átomos dos halogênios.

$$\begin{array}{c|c}
H \\
H - C - H + C I - C I \xrightarrow{luz} H - C - C I + H - C I \\
H \\
H
\end{array}$$

Podemos realizar a substituição dos demais átomos de hidrogênio sucessivamente, resultando nos compostos:

•
$$CH_4$$
 + 2 $CI_2 \rightarrow H_2CCI_2$ + 2 HCI

•
$$CH_4 + 3 CI_2 \rightarrow HCCI_3 + 3 HCI$$

•
$$CH_4 + 4 CI_2 \rightarrow CCI_4 + 4 HCI$$

As reações de halogenação também ocorrem com os demais halogênios, sendo que as mais comuns são a cloração e a bromação, pois com o F_2 , devido a sua grande reatividade, teremos uma reação explosiva e, com o I_2 a reação é muito lenta

Nos alcanos de cadeias maiores, teremos vários átomos de hidrogênios possíveis de serem substituídos e, a reatividade depende do carbono onde ele se encontra; a preferência de substituição segue a seguinte ordem:

Exemplo:

$$\begin{array}{c}
H \\
H_3C - C - CH_3 + Cl_2 \longrightarrow H_3C - C - CH_3 + HCl \\
CH_3 & CH_3 \\
& CH_3 \\
& Produto principal
\end{array}$$

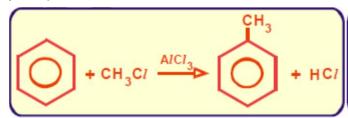
HALOGENAÇÃO DO BENZENO

Neste caso todos os átomos de hidrogênios são equivalentes e originará sempre o mesmo produto em uma monohalogenação.

Exemplo:

NITRAÇÃO DO BENZENO

Consiste na reação do benzeno com ácido nítrico (HNO $_3$ ou HO — NO $_2$) na presença do ácido sulfúrico (H $_2$ SO $_4$), que funciona como catalisador.



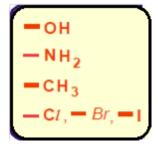
❖ SULFONAÇÃO DO BENZENO

Consiste na reação do benzeno com o ácido sulfúrico (H₂SO₄ ou HO — SO₃H) concentrado e a quente.

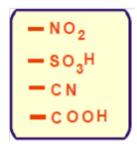
❖ ALQUILAÇÃO DO BENZENO

Consiste na reação do benzeno com haletos de alquila na presença de ácidos de Lewis.

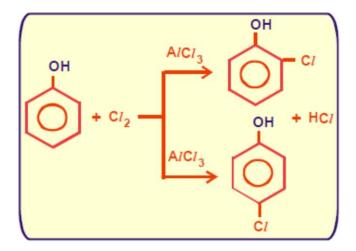
SUBSTITUIÇÃO NOS DERIVADOS DO BENZENO


Todas as reações de substituição observadas com benzeno também ocorrem com seus derivados, porém diferem na velocidade de ocorrência e nos produtos obtidos.

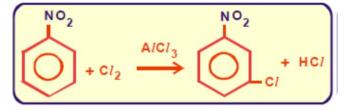
A velocidade da reação e o produto obtido dependem do radical presente no benzeno que orientam a entrada dos substituintes.


Assim teremos:

ORIENTADORES ORTO – PARA (ligações simples)



ORIENTADORES META (ligações complexas)



Os orientadores **META** possuem um átomo com ligação dupla ou tripla ligado ao benzeno. Exemplos:

Monocloração do fenol

Monocloração do nitro benzeno

REAÇÕES DE ADIÇÃO

As reações de adição mais importantes ocorrem nos alcenos, nos alcinos, em aldeídos e nas cetonas.

❖ ADIÇÃO DE HALETOS DE HIDROGÊNIO NOS ALCENOS

Os haletos de hidrogênio reagem com os alcenos produzindo haletos de alguil.

Para alcenos com três ou mais átomos de carbono a adição do haleto de alquil produzirá dois compostos, sendo um deles em maior proporção (produto principal). Neste caso, devemos levar em consideração a **REGRA DE MARKOVNIKOV**, que diz:

"O hidrogênio (H+) é adicionado ao carbono da dupla ligação mais hidrogenado".

❖ ADIÇÃO DE ÁGUA (HIDRATAÇÃO) AOS ALCENOS

Os alcenos reagem com água em presença de catalisadores ácidos (H+), originando álcoois.

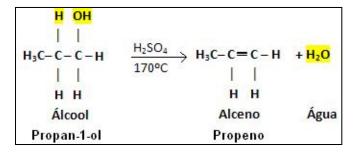
❖ ADIÇÃO DE HALOGÊNIOS (HALOGENAÇÃO) AOS ALCENOS

Os halogênios reagem com os alcenos, na presença do CCl₄, formando di-haletos de alquil.

HIDROGENAÇÃO DOS ALCENOS

Essa reação ocorre entre o H_2 e o alceno na presença de catalisadores metálicos (Ni, Pt e Pd).

www.flokinho.com.br


REAÇÕES DE ELIMINAÇÃO

As reações de eliminação são processos, em geral, inversos aos descritos para as reações de adição e, constituem métodos de obtenção de alcenos e alcinos.

❖ DESIDRATAÇÃO DE ÁLCOOIS

A desidratação (eliminação de água) de um álcool ocorre com aquecimento deste álcool em presença de ácido sulfúrico.

INTRAMOLECULAR

INTERMOLECULAR

$$H_3C - CH_2 - O$$
 $H + HO$ $- CH_2 - CH_3$ H_2SO_4 $H_3C - C - O - C - CH_3 + H_2O$ H_2 etoxietano éter dietílico éter sulfúrio

Álcoois terciários são mais facilmente desidratados que os secundários e estes, mais que os primários.

❖ DESALIDRIFICAÇÃO DE HALETO DE ALQUIL

Esta reação, normalmente, ocorre em solução concentrada de KOH em álcool.

O haleto eliminado reage com o KOH produzindo sal e água.

REAÇÕES DE OXIDAÇÃO E REDUÇÃO

As principais reações de oxidação e redução com compostos orgânicos ocorrem com os álcoois, aldeídos e alcenos.

❖ OXIDAÇÃO DE ÁLCOOIS E ALDEÍDOS

O comportamento dos álcoois primários, secundários e terciários, com os oxidantes, são semelhantes. Os álcoois primários, ao sofrerem, oxidação, transformam-se em aldeídos e estes, se deixados em contato com oxidante, são oxidados a ácidos carboxílicos.

$$H_3C - \stackrel{C}{\downarrow} - OH \xrightarrow{[O]} H_3C - C \xrightarrow{O} \stackrel{[O]}{\longrightarrow} H_3C - C \xrightarrow{O} OH$$

Os álcoois secundários oxidam-se formando cetonas.

Os álcoois terciários não sofrem oxidação!!!!!!!

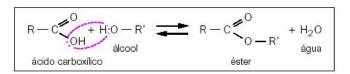
❖ OXIDAÇÃO DE ALCENOS

Os alcenos sofrem oxidação branda originando diálcoois vicinais.

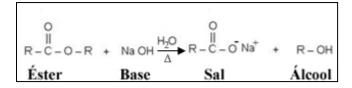
$$H_3C - C = C - CH_3 \xrightarrow{[O]} H_3C - C - C - CH_3$$

❖ OZONÓLISE DE ALCENOS

A ozonólise ocorre na presença de Zn e H₂O, e tem como objetivo a obtenção de aldeídos ou cetonas. A função do Zn é segurar o oxigênio produzido na reação reagindo rapidamente com a água oxigenada liberando água.


❖ OXIDAÇÃO ENÉRGICA

A oxidação enérgica, ocorre com quebra da ligação dupla, produzindo ácido carboxílico e /ou cetona.



REAÇÕES DE HIDRÓLISE

❖ ESTERIFICAÇÃO

❖ HIDRÓLISE ALCALINA

ADIÇÃO DE REAGENTE DE GRIGNARD A ALDEÍDOS OU CETONAS

A adição de reagentes de Grignard (RMgX), seguida de hidrólise, a aldeídos ou cetonas é um dos melhores processos para a preparação de álcoois.

O esquema geral do processo é:

metanal + RMgX
$$\xrightarrow{H_2^0}$$
 álcool primário

aldeído + RMgX $\xrightarrow{H_2^0}$ álcool secundário

cetona + RMgX $\xrightarrow{H_2^0}$ álcool terciário

EXEMPLOS:

metanal

álcool primário

$$H-C \xrightarrow{H} \frac{H_3CMgBr}{H_2O} \xrightarrow{H_3C-C-OH} H_3$$

etanal

álcool secundário

propanona

álcool terciário

$$H_{3}C - C - CH_{3} \xrightarrow{H_{3}CMgBr} H_{3}C - C - CH_{3}$$

$$H_{2}O \longrightarrow H_{3}C - C - CH_{3}$$

$$CH_{3}$$

